Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 11: 1357659, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510452

RESUMO

Introduction: The new coronavirus disease, COVID-19, poses complex challenges exacerbated by several factors, with respiratory tissue lesions being notably significant among them. Consequently, there is a pressing need to identify informative biological markers that can indicate the severity of the disease. Several studies have highlighted the involvement of proteins such as APOA1, XPNPEP2, ORP150, CUBN, HCII, and CREB3L3 in these respiratory tissue lesions. However, there is a lack of information regarding antibodies to these proteins in the human body, which could potentially serve as valuable diagnostic markers for COVID-19. Simultaneously, it is relevant to select biological fluids that can be obtained without invasive procedures. Urine is one such fluid, but its effect on clinical laboratory analysis is not yet fully understood due to lack of study on its composition. Methods: Methods used in this study are as follows: total serum protein analysis; ELISA on moderate and severe COVID-19 patients' serum and urine; bioinformatic methods: ROC analysis, PCA, SVM. Results and discussion: The levels of antiAPOA1, antiXPNPEP2, antiORP150, antiCUBN, antiHCII, and antiCREB3L3 exhibit gradual fluctuations ranging from moderate to severe in both the serum and urine of COVID-19 patients. However, the diagnostic value of individual anti-protein antibodies is low, in both blood serum and urine. On the contrary, joint detection of these antibodies in patients' serum significantly increases the diagnostic value as demonstrated by the results of principal component analysis (PCA) and support vector machine (SVM). The non-linear regression model achieved an accuracy of 0.833. Furthermore, PCA aided in identifying serum protein markers that have the greatest impact on patient group discrimination. The study revealed that serum serves as a superior analyte for describing protein quantification due to its consistent composition and lack of organic salts and drug residues, which can otherwise affect protein stability.

2.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542269

RESUMO

Inflammatory bowel diseases are extremely common throughout the world. However, in most cases, it is asymptomatic at the initial stage. Therefore, it is important to develop non-invasive diagnostic methods that allow identification of the IBD risks in a timely manner. It is well known that gastrointestinal microbiota secrete volatile compounds (VOCs) and their composition may change in IBD. We propose a non-invasive method to identify the dynamics of IBD development in the acute and remission stage at the level of VOCs in model of dextran sulfate sodium (DSS) with chemically induced colitis measured by headspace GC/MS (HS GC/MS). Methods: VOCs profile was identified using a headspace GC/MS (HS GC/MS). GC/MS data were processed using MetaboAnalyst 5.0 and GraphPad Prism 8.0.1 software. The disease activity index (DAI) and histological method were used to assess intestinal inflammation. The peak of intestinal inflammation activity was reached on day 7, according to the disease activity index. Histological examination data showed changes in the intestine due to different stages of inflammation. As the acute inflammation stage was reached, the metabolomic profile also underwent changes, especially at the short-fatty acids level. A higher relative amounts of acetic acid (p value < 0.025) and lower relative amounts of propanoic acid (p value < 0.0005), butanoic acid (p value < 0.005) and phenol 4-methyl- (p value = 0.053) were observed in DSS7 group on day 7 compared to the control group. In remission stage, disease activity indexes decreased, and the histological picture also improved. But metabolome changes continued despite the withdrawal of the DSS examination. A lower relative amounts of propanoic acid (p value < 0.025), butanoic acid (p value < 0.0005), pentanoic acid (p value < 0.0005), and a significant de-crease of hexanoic acid (p value < 0.0005) relative amounts were observed in the DSS14 group compared to the control group on day 14. A model of DSS-induced colitis in rats was successfully implemented for metabolomic assessment of different stages of inflammation. We demonstrated that the ratios of volatile compounds change in response to DSS before the appearance of standard signs of inflammation, determined by DAI and histological examination. Changes in the volatile metabolome persisted even after visual intestine repair and it confirms the high sensitivity of the microbiota to the damaging effects of DSS. The use of HS GC/MS may be an important addition to existing methods for assessing inflammation at early stages.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Ratos , Animais , Camundongos , Propionatos/efeitos adversos , Cromatografia Gasosa-Espectrometria de Massas , Modelos Animais de Doenças , Colite/induzido quimicamente , Colite/diagnóstico , Colite/patologia , Inflamação/patologia , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/patologia , Butiratos/efeitos adversos , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL , Colo/patologia
3.
Microorganisms ; 11(12)2023 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38138007

RESUMO

Toxin-antitoxin (TA) systems are widely present in bacterial genomes. Mycolicibacterium smegmatis, a common model organism for studying Mycobacterium tuberculosis physiology, has eight TA loci, including mazEF and vapBC. This study aims to investigate the physiological significance of these TA systems. Proteomic profiling was conducted on a culture overexpressing the VapC toxin, and the involvement of VapC in M. smegmatis stress responses to heat shock and antibiotic treatment was examined. While deciphering the underlying mechanisms of the altered stress resistance, we assessed the antibiotic susceptibility of vapBC, mazEF, and double vapBC-mazEF deletion mutants. Additionally, the mRNA levels of vapC and mazF were measured following tetracycline supplementation. The results reveal changes in the abundance of metabolic enzymes and stress response proteins associated with VapC overexpression. This activation of the general stress response leads to reduced thermosensitivity in M. smegmatis, but does not affect susceptibility to ciprofloxacin and isoniazid. Under tetracycline treatment, both vapC and mazF expression levels are increased, and the fate of the cell depends on the interaction between the corresponding TA systems.

4.
Polymers (Basel) ; 15(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37376252

RESUMO

We propose and demonstrate dendrimer-based coatings for a sensitive biochip surface that enhance the high-performance sorption of small molecules (i.e., biomolecules with low molecular weights) and the sensitivity of a label-free, real-time photonic crystal surface mode (PC SM) biosensor. Biomolecule sorption is detected by measuring changes in the parameters of optical modes on the surface of a photonic crystal (PC). We describe the step-by-step biochip fabrication process. Using oligonucleotides as small molecules and PC SM visualization in a microfluidic mode, we show that the PAMAM (poly-amidoamine)-modified chip's sorption efficiency is almost 14 times higher than that of the planar aminosilane layer and 5 times higher than the 3D epoxy-dextran matrix. The results obtained demonstrate a promising direction for further development of the dendrimer-based PC SM sensor method as an advanced label-free microfluidic tool for detecting biomolecule interactions. Current label-free methods for small biomolecule detection, such as surface plasmon resonance (SPR), have a detection limit down to pM. In this work, we achieved for a PC SM biosensor a Limit of Quantitation of up to 70 fM, which is comparable with the best label-using methods without their inherent disadvantages, such as changes in molecular activity caused by labeling.

5.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835449

RESUMO

In order to address the upcoming crisis in the treatment of Klebsiella pneumoniae infections, caused by an increasing proportion of resistant isolates, new approaches to antimicrobial therapy must be developed. One approach would be to use (bacterio)phages and/or phage derivatives for therapy. In this study, we present a description of the first K. pneumoniae phage from the Zobellviridae family. The vB_KpnP_Klyazma podovirus, which forms translucent halos around the plaques, was isolated from river water. The phage genome is composed of 82 open reading frames, which are divided into two clusters located on opposite strands. Phylogenetic analysis revealed that the phage belongs to the Zobellviridae family, although its identity with the closest member of this family was not higher than 5%. The bacteriophage demonstrated lytic activity against all (n = 11) K. pneumoniae strains with the KL20 capsule type, but only the host strain was lysed effectively. The receptor-binding protein of the phage was identified as a polysaccharide depolymerase with a pectate lyase domain. The recombinant depolymerase protein showed concentration-dependent activity against all strains with the KL20 capsule type. The ability of a recombinant depolymerase to cleave bacterial capsular polysaccharides regardless of a phage's ability to successfully infect a particular strain holds promise for the possibility of using depolymerases in antimicrobial therapy, even though they only make bacteria sensitive to environmental factors, rather than killing them directly.


Assuntos
Bacteriófagos , Podoviridae , Bacteriófagos/genética , Klebsiella pneumoniae/genética , Filogenia , Genoma Viral , Podoviridae/genética , Proteínas Recombinantes/genética
6.
Arch Microbiol ; 205(1): 28, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36520276

RESUMO

Mycobacterium tuberculosis is an extremely successful pathogen known for its ability to cause latent infection. The latter is connected with the bacterium resting state development and is considered to be based on the activity of toxin-antitoxin (TA) systems at least in part. Here we studied the physiological and proteomic consequences of VapC toxin overexpression together with the features of the protein synthesis apparatus and compared them with the characteristics of dormant mycobacterial cells in an M. smegmatis model. The findings allow suggesting the mechanism mycobacteria enter dormancy, which is realized through VapC-caused cleavage of the 23S rRNA Sarcin-Ricin loop followed by conservation of stalled ribosomes in a membrane-associated manner. The found features of resting mycobacteria protein synthesis apparatus hypothesize the mechanisms of resuscitation from dormancy through the ribosomes de-association off the membrane accompanied by the 23S rRNA break curing, and could be of value for the development of principally new antituberculosis agents.


Assuntos
Toxinas Bacterianas , Mycobacterium tuberculosis , RNA Ribossômico 23S/genética , RNA Ribossômico 23S/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Proteômica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo
7.
Int J Mol Sci ; 23(21)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36362010

RESUMO

Mutations in surface proteins enable emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to escape a substantial fraction of neutralizing antibodies and may thus weaken vaccine-driven immunity. To compare available vaccines and justify revaccination, rapid evaluation of antibody (Ab) responses to currently circulating SARS-CoV-2 variants of interest (VOI) and concern (VOC) is needed. Here, we developed a multiplex protein microarray-based system for rapid profiling of anti-SARS-CoV-2 Ab levels in human sera. The microarray system was validated using sera samples from SARS-CoV-2-free donors and those diagnosed with COVID-19 based on PCR and enzyme immunoassays. Microarray-based profiling of vaccinated donors revealed a substantial difference in anti-VOC Ab levels elicited by the replication-deficient adenovirus vector-base (Sputnik V) and whole-virion (CoviVac Russia COVID-19) vaccines. Whole-virion vaccine-induced Abs showed minor but statistically significant cross-reactivity with the human blood coagulation factor 1 (fibrinogen) and thrombin. However, their effects on blood clotting were negligible, according to thrombin time tests, providing evidence against the concept of pronounced cross-reactivity-related side effects of the vaccine. Importantly, all samples were collected in the pre-Omicron period but showed noticeable responses to the receptor-binding domain (RBD) of the Omicron spike protein. Thus, using the new express Ab-profiling system, we confirmed the inter-variant cross-reactivity of the anti-SARS-CoV-2 Abs and demonstrated the relative potency of the vaccines against new VOCs.


Assuntos
Formação de Anticorpos , Vacinas contra COVID-19 , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Formação de Anticorpos/genética , COVID-19/prevenção & controle , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Vacinação , Vacinas Virais/genética , Vacinas Virais/farmacologia , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/farmacologia , Análise em Microsséries
8.
Molecules ; 27(22)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36431930

RESUMO

Bile acids play a significant role in the digestion of nutrients. In addition, bile acids perform a signaling function through their blood-circulating fraction. They regulate the activity of nuclear and membrane receptors, located in many tissues. The gut microbiota is an important factor influencing the effects of bile acids via enzymatic modification. Depending on the rate of healthy and pathogenic microbiota, a number of bile acids may support lipid and glucose homeostasis as well as shift to more toxic compounds participating in many pathological conditions. Thus, bile acids can be possible biomarkers of human pathology. However, the chemical structure of bile acids is similar and their analysis requires sensitive and specific methods of analysis. In this review, we provide information on the chemical structure and the biosynthesis of bile acids, their regulation, and their physiological role. In addition, the review describes the involvement of bile acids in various diseases of the digestive system, the approaches and challenges in the analysis of bile acids, and the prospects of their use in omics technologies.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Ácidos e Sais Biliares , Transdução de Sinais/fisiologia , Homeostase
9.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36142492

RESUMO

Nano- and microparticles enter the body through the respiratory airways and the digestive system, or form as biominerals in the gall bladder, salivary glands, urinary bladder, kidney, or diabetic pancreas. Calcium, magnesium, and phosphate ions can precipitate from biological fluids in the presence of mucin as hybrid nanoparticles. Calcium carbonate nanocrystallites also trap mucin and are assembled into hybrid microparticles. Both mucin and calcium carbonate polymorphs (calcite, aragonite, and vaterite) are known to be components of such biominerals as gallstones which provoke inflammatory reactions. Our study was aimed at evaluation of neutrophil activation by hybrid vaterite-mucin microparticles (CCM). Vaterite microparticles (CC) and CCM were prepared under standard conditions. The diameter of CC and CCM was 3.3 ± 0.8 µm and 5.8 ± 0.7 µm, with ƺ-potentials of -1 ± 1 mV and -7 ± 1 mV, respectively. CC microparticles injured less than 2% of erythrocytes in 2 h at 1.5 mg mL-1, and no hemolysis was detected with CCM; this let us exclude direct damage of cellular membranes by microparticles. Activation of neutrophils was analyzed by luminol- and lucigenin-dependent chemiluminescence (Lum-CL and Luc-CL), by cytokine gene expression (IL-6, IL-8, IL-10) and release (IL-1ß, IL-6, IL-8, IL-10, TNF-α), and by light microscopy of stained smears. There was a 10-fold and higher increase in the amplitude of Lum-CL and Luc-CL after stimulation of neutrophils with CCM relative to CC. Adsorption of mucin onto prefabricated CC microparticles also contributed to activation of neutrophil CL, unlike mucin adsorption onto yeast cell walls (zymosan); adsorbed mucin partially suppressed zymosan-stimulated production of oxidants by neutrophils. Preliminary treatment of CCM with 0.1-10 mM NaOCl decreased subsequent activation of Lum-CL and Luc-CL of neutrophils depending on the used NaOCl concentration, presumably because of the surface mucin oxidation. Based on the results of ELISA, incubation of neutrophils with CCM downregulated IL-6 production but upregulated that of IL-8. IL-6 and IL-8 gene expression in neutrophils was not affected by CC or CCM according to RT2-PCR data, which means that post-translational regulation was involved. Light microscopy revealed adhesion of CC and CCM microparticles onto the neutrophils; CCM increased neutrophil aggregation with a tendency to form neutrophil extracellular traps (NETs). We came to the conclusion that the main features of neutrophil reaction to mucin-vaterite hybrid microparticles are increased oxidant production, cell aggregation, and NET-like structure formation, but without significant cytokine release (except for IL-8). This effect of mucin is not anion-specific since particles of powdered kidney stone (mainly calcium oxalate) in the present study or calcium phosphate nanowires in our previous report also activated Lum-CL and Luc-CL response of neutrophils after mucin sorption.


Assuntos
Luminol , Neutrófilos , Cálcio/metabolismo , Carbonato de Cálcio/farmacologia , Oxalato de Cálcio/metabolismo , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Íons/metabolismo , Luminol/química , Magnésio/metabolismo , Mucinas/metabolismo , Neutrófilos/metabolismo , Oxidantes/farmacologia , Fosfatos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Zimosan/farmacologia
10.
Front Microbiol ; 13: 817024, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308348

RESUMO

G-quadruplexes (G4s) are non-canonical DNA structures that could be considered as potential therapeutic targets for antimicrobial compounds, also known as G4-stabilizing ligands. While some of these ligands are shown in vitro to have a stabilizing effect, the precise mechanism of antibacterial action has not been fully investigated. Here, we employed genome-wide RNA-sequencing to analyze the response of Mycobacterium smegmatis to inhibitory concentrations of BRACO-19 and TMPyP4 G4 ligands. The expression profile changed (FDR < 0.05, log2FC > |1|) for 822 (515↑; 307↓) genes in M. smegmatis in response to BRACO-19 and for 680 (339↑; 341↓) genes in response to TMPyP4. However, the analysis revealed no significant ligand-induced changes in the expression levels of G4-harboring genes, genes under G4-harboring promoters, or intergenic regions located on mRNA-like or template strands. Meanwhile, for the BRACO-19 ligand, we found significant changes in the replication and repair system genes, as well as in iron metabolism genes which is, undoubtedly, evidence of the induced stress. For the TMPyP4 compound, substantial changes were found in transcription factors and the arginine biosynthesis system, which may indicate multiple biological targets for this compound.

11.
Data Brief ; 40: 107770, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34977286

RESUMO

The SARS-CoV-2 pandemic is a big challenge for humanity. The COVID-19 severity differs significantly from patient to patient, and it is important to study the factors protecting from severe forms of the disease. Respiratory microbiota may influence the patient's susceptibility to infection and disease severity due to its ability to modulate the immune system response of the host organism. This data article describes the microbiome dataset from the upper respiratory tract of SARS-CoV-2 positive patients from Russia. This dataset reports the microbial community profile of 335 human nasopharyngeal swabs collected between 2020-05 and 2021-03 during the first and the second epidemic waves. Samples were collected from both inpatients and outpatients in 4 cities of the Russian Federation (Moscow, Kazan, Irkutsk, Nizhny Novgorod) and sequenced using the 16S rRNA gene amplicon sequencing of V3-V4 region. Data contains information about the patient such as age, sex, hospitalization status, percent of damaged lung tissue, oxygen saturation (SpO2), respiratory rate, need for supplemental oxygen, chest computer tomography severity score, SARS-CoV-2 lineage, and also information about smoking and comorbidities. The amplicon sequencing data were deposited at NCBI SRA as BioProject PRJNA751478.

12.
Genes (Basel) ; 12(9)2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34573293

RESUMO

There is growing concern about the emergence and spread of multidrug-resistant Neisseria gonorrhoeae. To effectively control antibiotic-resistant bacterial pathogens, it is necessary to develop new antimicrobials and to understand the resistance mechanisms to existing antibiotics. In this study, we discovered the unexpected onset of drug resistance in N. gonorrhoeae caused by amino acid substitutions in the periplasmic chaperone SurA and the ß-barrel assembly machinery component BamA. Here, we investigated the i19.05 clinical isolate with mutations in corresponding genes along with reduced susceptibility to penicillin, tetracycline, and azithromycin. The mutant strain NG05 (surAmut bamAmut, and penAmut) was obtained using the pan-susceptible n01.08 clinical isolate as a recipient in the transformation procedure. Comparative proteomic analysis of NG05 and n01.08 strains revealed significantly increased levels of other chaperones, Skp and FkpA, and some transport proteins. Efflux pump inhibition experiments demonstrated that the reduction in sensitivity was achieved due to the activity of efflux pumps. We hypothesize that the described mutations in the surA and bamA genes cause the qualitative and quantitative changes of periplasmic chaperones, which in turn alters the function of synthesized cell envelope proteins.


Assuntos
Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/genética , Farmacorresistência Bacteriana Múltipla/genética , Gonorreia/tratamento farmacológico , Neisseria gonorrhoeae/genética , Substituição de Aminoácidos , Azitromicina/farmacologia , Gonorreia/microbiologia , Humanos , Mutação , Neisseria gonorrhoeae/efeitos dos fármacos , Neisseria gonorrhoeae/isolamento & purificação , Penicilinas/farmacologia , Proteômica , Tetraciclina/farmacologia
13.
Methods Mol Biol ; 2259: 191-201, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33687716

RESUMO

Recent advances in MS/MS technology have made it possible to use proteomic data to predict protein-coding sequences. This approach is called proteogenomics, and it allows to correctly translate start and stop sites and to reveal new open reading frames. Here, we focus on using proteogenomics to improve the annotation of Mycobacteriumtuberculosis strains. We also describe detail procedures of the extraction of proteins and their further preparation for LC-MS/MS analysis and outline the main steps of data analysis.


Assuntos
Proteínas de Bactérias/genética , Mycobacterium tuberculosis/genética , Proteogenômica/métodos , Tuberculose/microbiologia , Proteínas de Bactérias/análise , Proteínas de Bactérias/isolamento & purificação , Cromatografia Líquida/métodos , Genoma Bacteriano , Humanos , Anotação de Sequência Molecular , Mycobacterium tuberculosis/química , Espectrometria de Massas em Tandem/métodos
14.
Polymers (Basel) ; 14(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35012173

RESUMO

Here, we propose and study several types of quartz surface coatings designed for the high-performance sorption of biomolecules and their subsequent detection by a photonic crystal surface mode (PC SM) biosensor. The deposition and sorption of biomolecules are revealed by analyzing changes in the propagation parameters of optical modes on the surface of a photonic crystal (PC). The method makes it possible to measure molecular and cellular affinity interactions in real time by independently recording the values of the angle of total internal reflection and the angle of excitation of the surface wave on the surface of the PC. A series of dextrans with various anchor groups (aldehyde, carboxy, epoxy) suitable for binding with bioligands have been studied. We have carried out comparative experiments with dextrans with other molecular weights. The results confirmed that dextran with a Mw of 500 kDa and anchor epoxy groups have a promising potential as a matrix for the detection of proteins in optical biosensors. The proposed approach would make it possible to enhance the sensitivity of the PC SM biosensor and also permit studying the binding process of low molecular weight molecules in real time.

15.
Antibiotics (Basel) ; 9(10)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086595

RESUMO

Mycobacterium tuberculosis is one of the most dangerous pathogens. Bacterial resistance to antituberculosis drugs grows each year, but searching for new drugs is a long process. Testing for available drugs to find active against mycobacteria may be a good alternative. In this work, antibiotics of the aureolic acid group were tested on a model organism Mycobacterium smegmatis. We presumed that antibiotics of this group may be potential G4 ligands. However, this was not confirmed in our analyses. We determined the antimicrobial activity of these drugs and revealed morphological changes in the cell structure upon treatment. Transcriptomic analysis documented increased expression of MSMEG_3743/soj and MSMEG_4228/ftsW, involved in cell division. Therefore, drugs may affect cell division, possibly disrupting the function of the Z-ring and the formation of a septum. Additionally, a decrease in the transcription level of several indispensable genes, such as nitrate reductase subunits (MSMEG_5137/narI and MSMEG_5139/narX) and MSMEG_3205/hisD was shown. We concluded that the mechanism of action of aureolic acid and its related compounds may be similar to that bedaquiline and disturb the NAD+/NADH balance in the cell. All of this allowed us to conclude that aureolic acid derivatives can be considered as potential antituberculosis drugs.

16.
Int J Mycobacteriol ; 9(2): 138-143, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32474534

RESUMO

Background: Polyamines are widespread intracellular molecules able to influence antibiotic susceptibility, but almost nothing is known on their occurrence and physiological role in mycobacteria. Methods: here, we analyzed transcriptomic, proteomic and biochemical data and obtained the first evidence for the post-transcriptional expression of some genes attributed to polyamine metabolism and polyamine transport in Mycolicibacterium smegmatis (basionym Mycobacterium smegmatis). Results: in our experiments, exponentially growing cells demonstrated transcription of 21 polyamine-associated genes and possessed 7 enzymes of polyamine metabolism and 2 polyamine transport proteins. Conclusion: Mycolicibacterium smegmatis putrescine synthesizing enzyme agmatinase SpeB was originally shown to catalyze agmatine conversion to putrescine in vitro. Nevertheless, we have not found any polyamines in mycobacterial cells.


Assuntos
Mycobacterium smegmatis/química , Mycobacterium smegmatis/enzimologia , Poliaminas/análise , Ureo-Hidrolases/metabolismo , Agmatina/metabolismo , Perfilação da Expressão Gênica , Mycobacterium smegmatis/genética , Proteômica , Putrescina/metabolismo , Ureo-Hidrolases/genética
17.
Pathogens ; 9(5)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365818

RESUMO

The Central Asia Outbreak (CAO) clade is a growing public health problem for Central Asian countries. Members of the clade belong to the narrow branch of the Mycobacterium tuberculosis Beijing genotype and are characterized by multidrug resistance and increased transmissibility. The Rostov strain of M. tuberculosis isolated in Russia and attributed to the CAO clade based on PCR-assay and whole genome sequencing and the laboratory strain H37Rv were selected to evaluate the virulence on C57Bl/6 mice models by intravenous injection. All mice infected with the Rostov strain succumbed to death within a 48-day period, while more than half of the mice infected by the H37Rv strain survived within a 90-day period. Mice weight analysis revealed irreversible and severe depletion of animals infected with the Rostov strain compared to H37Rv. The histological investigation of lung and liver tissues of mice on the 30th day after injection of mycobacterial bacilli showed that the pattern of pathological changes generated by two strains were different. Moreover, bacterial load in the liver and lungs was higher for the Rostov strain infection. In conclusion, our data demonstrate that the drug-resistant Rostov strain exhibits a highly virulent phenotype which can be partly explained by the CAO-specific mutations.

19.
Pathogens ; 9(2)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085490

RESUMO

Tuberculosis, caused by Mycobacterium tuberculosis complex bacteria, remains one of the most pressing health problems. Despite the general trend towards reduction of the disease incidence rate, the situation remains extremely tense due to the distribution of the resistant forms. Most often, these strains emerge through the intra-host microevolution of the pathogen during treatment failure. In the present study, the focus was on three serial clinical isolates of Mycobacterium tuberculosis Beijing B0/W148 cluster from one patient with pulmonary tuberculosis, to evaluate their changes in metabolism during anti-tuberculosis therapy. Using whole genome sequencing (WGS), 9 polymorphisms were determined, which occurred in a stepwise or transient manner during treatment and were linked to the resistance (GyrA D94A; inhA t-8a) or virulence. The effect of the inhA t-8a mutation was confirmed on both proteomic and transcriptomic levels. Additionally, the amount of RpsL protein, which is a target of anti-tuberculosis drugs, was reduced. At the systemic level, profound changes in metabolism, linked to the evolution of the pathogen in the host and the effects of therapy, were documented. An overabundance of the FAS-II system proteins (HtdX, HtdY) and expression changes in the virulence factors have been observed at the RNA and protein levels.

20.
Sci Rep ; 9(1): 19255, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31848428

RESUMO

Mycobacterium tuberculosis Beijing B0/W148 is one of the most widely distributed clusters in the Russian Federation and in some countries of the former Soviet Union. Recent studies have improved our understanding of the reasons for the "success" of the cluster but this area remains incompletely studied. Here, we focused on the system omics analysis of the RUS_B0 strain belonging to the Beijing B0/W148 cluster. Completed genome sequence of RUS_B0 (CP020093.1) and a collection of WGS for 394 cluster strains were used to describe the main genetic features of the population. In turn, proteome and transcriptome studies allowed to confirm the genomic data and to identify a number of finds that have not previously been described. Our results demonstrated that expression of the whiB6 which contains cluster-specific polymorphism (a151c) increased almost 40 times in RUS_B0. Additionally, the level of ethA transcripts in RUS_B0 was increased by more than 7 times compared to the H37Rv. Start sites for 10 genes were corrected based on the combination of proteomic and transcriptomic data. Additionally, based on the omics approach, we identified 5 new genes. In summary, our analysis allowed us to summarize the available results and also to obtain fundamentally new data.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Genótipo , Polimorfismo Genético , Proteoma , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Perfilação da Expressão Gênica , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...